

Let's Take It From the Top

Ramon Diego, Haley Gipson, Huaidian Hou, and Anna Huang Mentors: Dr. Alejandro Bravo-Doddoli and Kausik Das

University of Michigan Laboratory of Geometry

ABSTRACT

- The study of rigid body motion is equivalent to the study of dynamics in the group of rotations \mathbb{R}^3 denoted by SO(3).
- General dynamics in SO(3) are **chaotic.** There exist only three examples where the dynamics are **integrable** (non-chaotic): Lagrange, Euler and Kovalevskaya tops.
- These tops have many potential applications in the study of planetary motion, but they are difficult to visualize.

OBJECTIVE:

Simulate Lagrange, Euler, and Kovalevskaya Tops in MATLAB

THEORETICAL BACKGROUND

RIGID BODY MOTION: Tops (and also the Earth) can undergo three motions

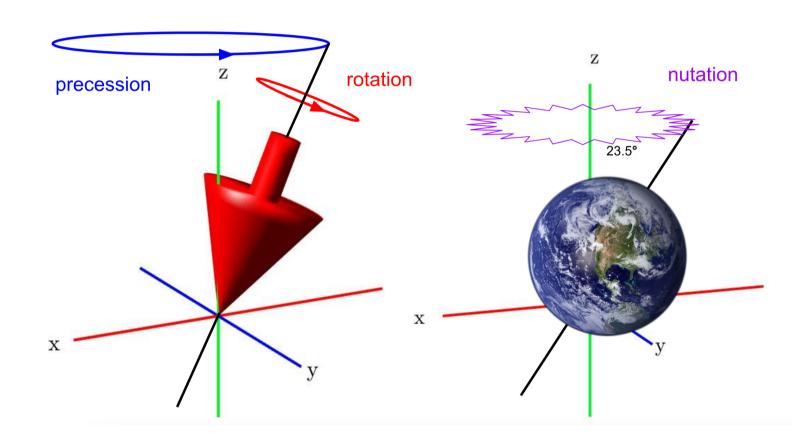


Figure 1: Rotation, precession, and nutation diagram

LIE GROUPS

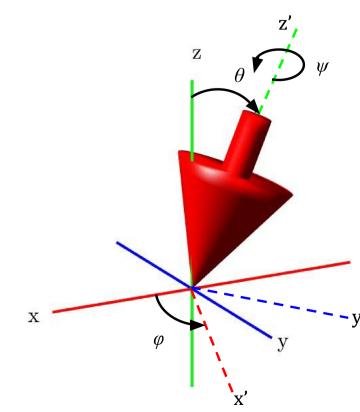
- Lie groups model continuous symmetries, e.g. SO(3) is the group of rotations in \mathbb{R}^3 .
- The tangent space $T^*SO(3)$ = space of velocities where the Possion bracket is defined.
- Possion bracket $\{F, H\}$ is a tool we can use to find the equations of motion of our tops where F is a smooth function and H is the Hamiltonian.

HAMILTON'S EQUATIONS OF MOTION [Hamilton]

$$\dot{x}_i = \frac{\partial H}{\partial x}$$
, and $\dot{p}_i = -\frac{\partial H}{\partial x}$.

where $H(\mathbf{x}, \mathbf{p})$ given $\mathbf{x} = (x_1,, x_n)$ is position and $\mathbf{p} = (p_1,, p_n)$ is momentum

EULER ANGLES



Definition. F is a **constant of motion** if its Poisson bracket commutes with H. A given H in $T^*SO(3)$ will be **integrable** if it has 3 linearly independent constants of motion that the Poisson bracket commutes between.

MOMENTS OF INERTIA

- Moment of inertia I = "rotational mass."
- There exists a natural orthonormal set of principal axes for a rigid body I_1 , I_2 and I_3 that simplify equations of motion.

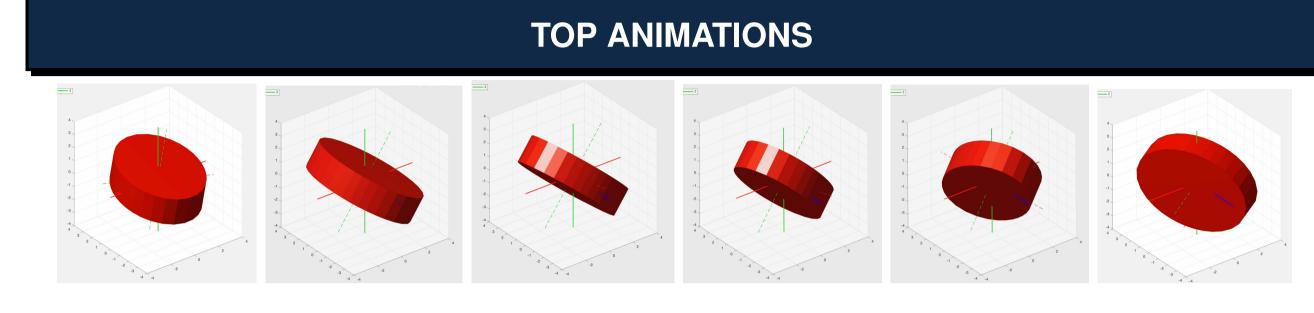


Figure 2: Euler Top Motion Snapshots

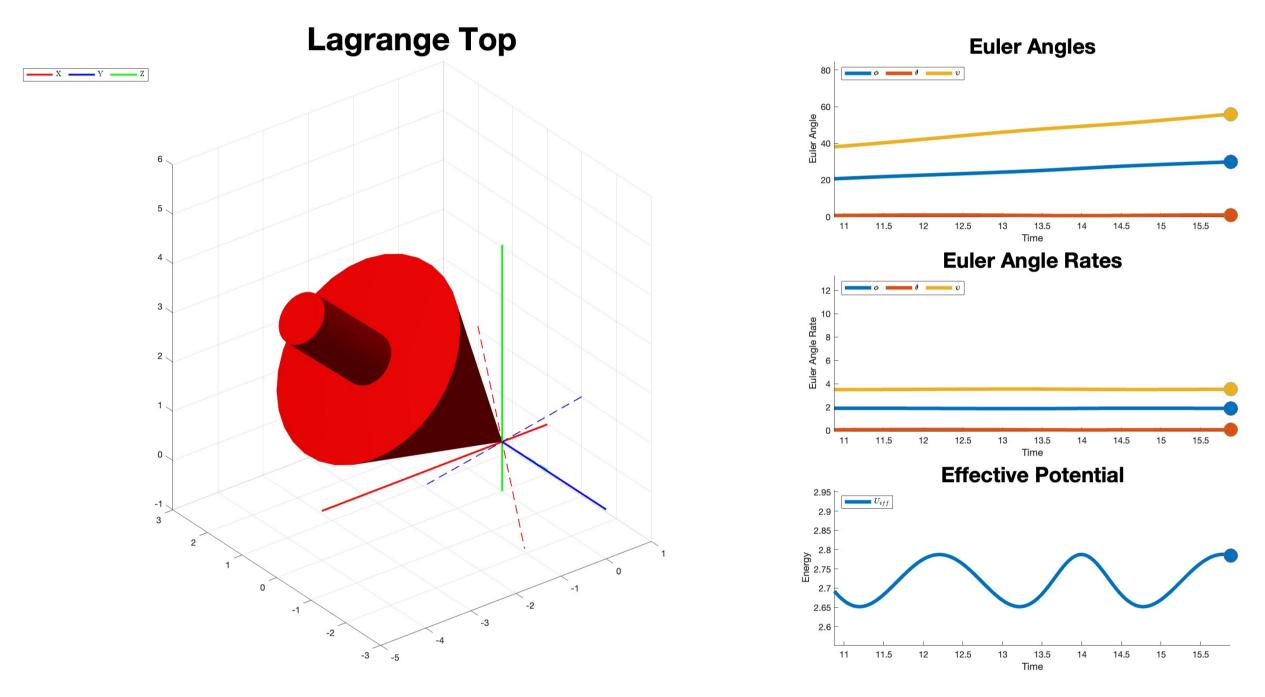


Figure 3: Lagrange Top Animation Interface Snapshot

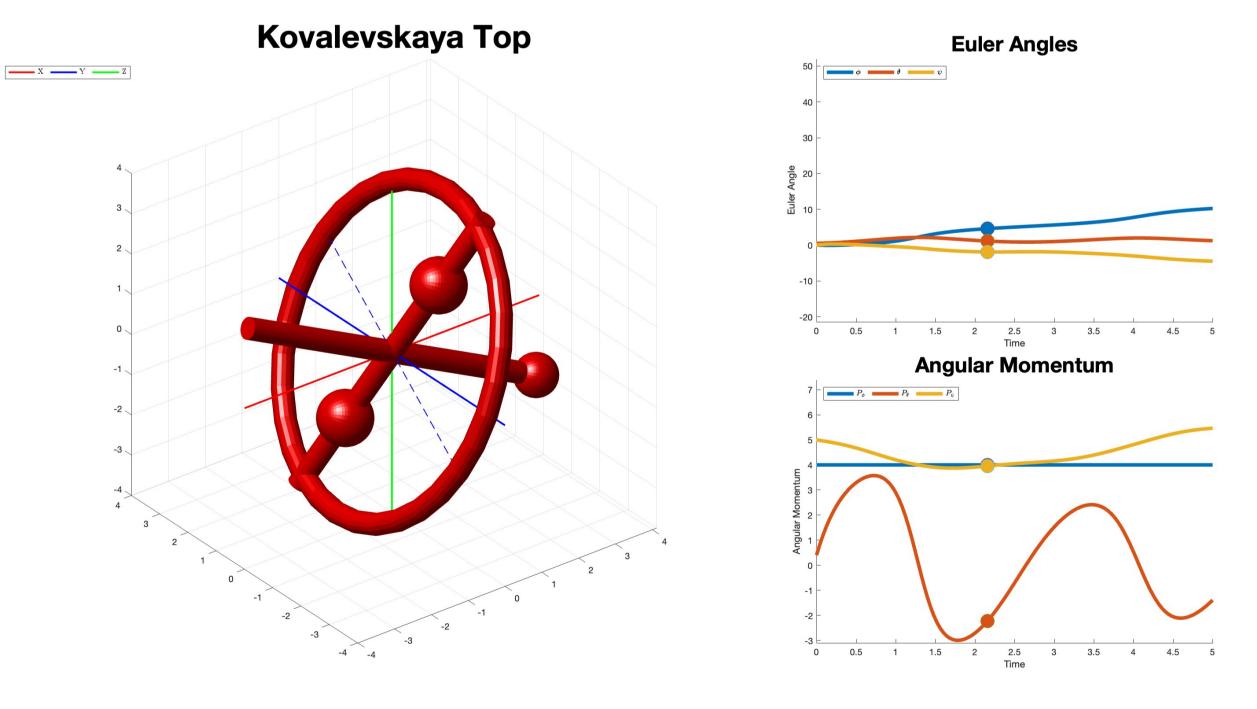


Figure 4: Kovalevskaya Top Animation Interface Snapshot

Type	Moments of Inertia	Constants of Motion	Hamiltonian H
Lagrange	$I_1 = I_2 < I_3$	p_{ϕ} , p_{ψ} and H	$\frac{p_{\theta}^{2}}{2I_{1}} + \frac{(p_{\phi} - p_{\psi}\cos(\theta))^{2}}{2I_{1}} + \frac{p_{\psi}^{2}}{2I_{3}} + gml\cos(\theta)$
Euler	$I_1 < I_2 < I_3$	p_1, p_2, p_3	$\frac{I_1\omega_1^2}{2} + \frac{I_2\omega_2^2}{2} + \frac{I_3\omega_3^2}{2}$
Kovalevskaya	$I_1 = I_2 = 2I_3$	p_{ϕ} , K and H	$\frac{p_{\theta}^2}{2I} + \frac{(p_{\phi} - p_{\psi}\cos(\theta))^2}{2I\sin^2(\theta)} + \frac{p_{\psi}^2}{4I} + gma\sin(\theta)\sin(\psi)$

 Table 1: Tops' Properties Table

COMPUTATIONAL METHODS

• We derived differential equations for the Euler angle rates from our Hamiltonians

Example: Differential Equations for Lagrange Top

$$\frac{d\phi}{dt} = \frac{b - a\cos(\theta)}{\sin^2(\theta)}, \qquad \frac{d\psi}{dt} = a\frac{I_1}{I_2} - \frac{(b - a\cos(\theta))\cos(\theta)}{\sin^2(\theta)}$$

$$\frac{d^2\theta}{dt^2} = \frac{(a^2 + b^2)\cos(\theta)}{\sin^2(\theta)} - ab\frac{3 + \cos(2\theta)}{2\sin^3(\theta)} + \frac{\beta}{2}\sin(\theta)$$

- To find the equations of motion, we used ordinary differential equation solvers and other numerical integration methods.
- Our packages support custom initial conditions including angular velocity, moments of inertia, and initial heading. It also supports configuring multiple tops within one file.

RESULTS

EULER TOP VIDEO

• Gimbal locking causes momentary spike in the Euler angle rates.

LAGRANGE TOP VIDEO

• Nutation causes effective potential U_{eff} to oscillate.

KOVALEVSKAYA TOP VIDEO

• Back-and-forth motion: a combination of rotation and precession.

APPLICATIONS

- Integrable tops have many potential applications to planetary motion because planets are chaotic systems, making them difficult to study.
- Earth is similar to a Lagrange top, but its motion is closer to that of a **fast top**, i.e. it rotates much faster than it nutates or precesses.
- For reference, the Earth rotates roughly every 24 hours, nutates every 18.6 years, and precesses every 26,000 years!

FUTURE RESEARCH:

Study Connections Between Motion of Earth and Fast Tops

REFERENCES

- [1] Aleksei Viktorovich Bolsinov, PH Richter, and Anatoly Timofeevich Fomenko. The method of loop molecules and the topology of the kovalevskaya top. Sbornik: Mathe- matics, 191(2):151, 2000.
- [2] Illinois Geometry Lab. IGL Poster Template. University of Illinois at Urbana-Champaign Department of Mathematics, 2017.
- [3] John Robert Taylor and John R Taylor. Classical mechanics, volume 1. Springer, 2005.
- [4] John Stillwell. Naive lie theory. Springer Science & Business Media, 2008.
- [5] Lev Davidovich Landau and Evgeny Mikhailovich Lifshitz. Mechanics, volume 1. CUP Archive, 1960.
 - Thank you Dr. Alejandro Bravo-Doddoli, Kausik Das, and Dr. Nir Gadish for supporting our research project.